5.9 THREE FACTOR SPLIT PLOT MODEL (IV) Y = C|S'(B|A) on a response of proportions
Analysis of terms: C|B|A + S(B A)
Data:
S A B C Su Fa Fr
1 1 1 1 15 58 0.470462
2 1 1 1 10 76 0.347977
1 1 1 2 17 52 0.519405
2 1 1 2 19 13 0.879706
1 1 2 1 26 99 0.473574
2 1 2 1 21 41 0.621171
1 1 2 2 14 67 0.428756
2 1 2 2 12 9 0.857072
1 2 1 1 10 82 0.335975
2 2 1 1 12 96 0.339837
1 2 1 2 30 14 0.971482
2 2 1 2 32 1 1.395827
1 2 2 1 37 54 0.691440
2 2 2 1 30 12 1.006854
1 2 2 2 32 66 0.608246
2 2 2 2 37 7 1.160521
1 3 1 1 18 34 0.629015
2 3 1 1 18 55 0.519635
1 3 1 2 23 85 0.479662
2 3 1 2 21 34 0.666087
1 3 2 1 24 82 0.495909
2 3 2 1 27 65 0.572501
1 3 2 2 37 27 0.863845
2 3 2 2 37 60 0.665701
COMMENT: 'Su' is the frequency of successes, 'Fa' the frequency of failures, 'Fr'
is the Arcsin-root transformed fraction: Su/(Su + Fa).
Model 5.9(i) A, B and C are fixed factors, S is a random blocking factor:
Method 1. Analysis of Fr assuming a normal distribution of residuals.
Source DF SS MS F P
1 A 2 0.2650 0.1325 2.36 0.175
2 B 1 0.0330 0.0330 0.59 0.472
3 B*A 2 0.0043 0.0021 0.04 0.963
4 S(B*A) 6 0.3363 0.0561 - -
5 C 1 0.3730 0.3730 12.65 0.012
6 C*A 2 0.1158 0.0579 1.96 0.221
7 C*B 1 0.0997 0.0997 3.38 0.116
8 C*B*A 2 0.2747 0.1374 4.66 0.060
9 C*S(B*A) 6 0.1769 0.0295 - -
10 P(C*S(B*A) 0 - -
Total 23 1.6787
Method 2. Analysis of Su and Fa frequencies assuming a binomial error structure.
See the set of commands in R for obtaining deviances at:
http://www.soton.ac.uk/~cpd/anovas/datasets/ANOVA%20in%20R.htm#model5_9binomial
Because the residual deviance greatly exceeds the residual d.f. (28.123 > 6 for
A|B and 38.790 > 6 for C and its interactions), significance tests need to
compensate for overdispersion. This is done by treating the deviance for each
term as a SS. Then MS = SS/d.f., and F = MS[term]/MS[Error], with MS[Error]
obtained by dividing the residual deviance of the last-entered term in a step by
its residual d.f.
Deviance
Source DF = SS MS F P
1 A 2 15.442 7.721 1.65 0.269
2 B 1 8.675 8.675 1.85 0.223
3 B*A 2 3.644 1.822 0.39 0.694
4 S(B*A) 6 28.123 4.687 - -
5 C 1 60.058 60.058 9.29 0.023
6 C*A 2 12.986 6.493 1.00 0.421
7 C*B 1 19.318 19.318 2.99 0.135
8 C*B*A 2 69.035 34.518 5.34 0.047
9 C*S(B*A) 6 38.790 6.465 - -
10 P(C*S(B*A) 0 - -
Total 23 256.066
__________________________________________________________________
Doncaster, C. P. & Davey, A. J. H. (2007) Analysis of Variance and
Covariance: How to Choose and Construct Models for the Life Sciences.
Cambridge: Cambridge University Press.
http://www.southampton.ac.uk/~cpd/anovas/datasets/